# **Furnace Heat Transfer**

### - Faster, Cheaper, Better

### **Curt Colopy**





### What is a Si-SiC Composite?



50% Si + 50% SiC by volume, metallurgical grade Silicon metal with 80 mesh SiC particles



### Rationale for Si-SiC Radiant Tubes

- Conventional = Very Long Life
- Enabling = Very High Temp
- Productivity = Higher Throughput



### **Conventional Savings**

- Excellent Creep Properties to 2450°F
  - = No Tube Droop or Distortion
- Excellent Resistance to Carburization
  No Tube Corrosion or Embrittlement
- Excellent Thermal Shock & Low CTE
  No Fracture in Heat-Up or Cool-Down

18+ Years Continuous Carburizing Service



#### Compare Alloys to Si-SiC @2450°F = ~8.5 KPSI Stress @ <0.6% Strain



Temperature °F /°C



# Si-SiC Composite vs. 600 Alloy (after just 1 hour) *No deformation for the INEX tube tested 360 hours @ 2462°F.*





### Metal Alloy Tubes after <24 Months





### Si-SiC Enables Processing >1800°F

- Stainless Steel Aging
- Powdered Metal Sintering
- Minerals Processing



## What Limits Furnace Throughput ?

- Metallurgical Objectives
- Mechanical Constraints
- Radiant Tube <u>Heat Flux</u>
- NOT Refractory or Burners



## What is Heat Flux ?

Heat flux or thermal flux is the rate of heat energy transfer through a given surface, per unit surface.

- (*BTU/hour*)/inch<sup>2</sup>
- $kW/meter^2 = 2.2 BTU/hr/in^2$



### **Design Criteria for Radiant Tubes**

#### Metal Alloy Tubes @ 1800°F :

- Conservative = 50 BTU/hr/in<sup>2</sup>
- Nominal = 55 BTU/hr/in<sup>2</sup>
- Aggressive = 60 BTU/hr/in<sup>2</sup>

Max Service **\****F* depends on Alloy & Atmosphere

### Si-SiC Composite Tubes @ 1800°F : • Nominal = 110 BTU/hr/in<sup>2</sup> Maximum Service Temp is 2450°F !!!





SANKEY DIAGRAM Typical Pusher Furnace

Parasitic or Standing Losses average ~20%

- Wall Losses
- Opening Losses
- Cooling & Conveyor Losses
- Fixtures, Trays, Baskets
- Storage Losses (Batch Furnace)



## **FASTER Cycle Time**

- Increases furnace throughput
- Reduces per unit standing (parasitic) losses
- Does NOT reduce process energy required
- Does NOT improve combustion efficiency







#### Compare Alloys to Si-SiC @2450°F = ~8.5 KPSI Stress @ <0.6% Strain

**Creep Stress to Rupture @ 10K Hours** 



Temperature °F /°C



### **CHEAPER Furnace Operation**

- 25% Increase in Throughput = 25% More Load (reducing Furnace Operating Hours by 20%)
- Process Energy Required Remains the Same
  i.e. Work on Load is Unchanged = 0.0%
- Standing Energy Losses of 20% Eliminated for the 20% of Furnace Hours Reduced = +4.0%
- Offset Somewhat by Higher Exhaust Losses (1906°F > 1999°F) Available Heat = -2.0%



#### **"SAME-WORK" SCENARIO**

|             | BASELINE                          |                | 25% FASTER                     |                              |
|-------------|-----------------------------------|----------------|--------------------------------|------------------------------|
| Load Cycle  | <u>Hours</u>                      | BTU/hour       | <u>Hours</u>                   | <u>BTU/hour</u>              |
| Ramp-Up     | 4.0                               | 1,000,000      | 2.7                            | 1,385,185                    |
| Soak        | 2.0                               | 600,000        | 2.0                            | 600,000                      |
| Turn-Around | <u>0.5</u><br><mark>6.5</mark> ho | 0<br>ours/load | <u>0.5</u><br>5.2 hc<br>-20% f | 0<br>ours/load<br>ewer hours |

... for the "SAME-WORK":

| 500         | hours/month  | 400                       |
|-------------|--------------|---------------------------|
| 76.9        | cycles/month | 76.9                      |
| 5,200,000   | BTU/cycle    | 4,940,000                 |
| 400,000,000 | BTU/month    | 380,000,000               |
|             |              | -5.0% Energy, Un-Adjusted |
|             |              | 12 00/ Eulerinet Lana     |

+2.0% Exhaust Loss



### "Back of the Envelope" Savings

1200 more hours/year/furnace <u>5.2</u> hours/cycle 231 cycles/year <u>2,000</u> lbs/cycle 461,538 lbs/year <u>\$1.10</u> Sales Value / lb \$507,692 Increased Sales <u>50%</u> Variable Cost **\$253,846 EBIT / furnace** 

Compare with:

- New Si-SiC Radiant Tubes <\$25,000
- New EGR-type Burners, if Needed <\$25,000
- Used or New Furnace



### Why Are Si-SiC Tubes BETTER ?

- Proven Life >18 Years in Carburizing
- High Temp Processing to 2300°F
- 25% More Product Throughput
- < 12 Months Payback



#### FASTER, CHEAPER, BETTER @ 1400°F - 2300°F





# **QUESTIONS ?**

Curt Colopy <u>ccolopy@INEXinc.net</u> 716-537-2270 <u>www.INEXinc.net</u> Booth #315

